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To get started: On “the didactic” 

A “gesture” δ is looked upon by certain 

“instances” ŵ as didactic towards a 

certain object ℴ (or set   of objects ℴ), 

with respect to certain persons x ∈ X, if, 

once this gesture has been performed, 

the knowledge possessed by x ∈ X of ℴ 

∈   is judged by ŵ to be greater than the 

knowledge possessed by x prior to the 

performance of δ. 



What is “knowing” according to the ATD? 

 

• In the ATD, “the knowledge that the person 

x has of the object ℴ” is nothing else than the 

relation of x to ℴ, denoted by R(x, ℴ). 

 

• From the point of view of the instance ŵ, x 

knows the object ℴ if ŵ judges the relation of 

x to ℴ to be non-empty: ŵ ⊢ R(x, ℴ) ≠ ∅. 

 



• A person x is, according to ŵ, an 

“admissible” subject of an institutional 

position î = (I, p) if, for any object ℴ that î 

knows according to ŵ, i.e., such that 

ŵ ⊢ R(î, ℴ) ≠ ∅, 

we have 

ŵ ⊢ R(x, ℴ) ≅ R(î, ℴ), 

which means that ŵ judges the relation of x 

to ℴ to be “not very different”, from the 

relation R(î, ℴ) judged to be “ideal” by ŵ of 

anyone who would occupy the position î. 



• A person x can be judged to have “good 

knowledge” of an object ℴ, i.e., 

ŵ ⊢ R(x, ℴ) ≅ R(î1, ℴ), 

which will allow this person to occupy a 

certain institutional position î1, but at the 

same time appear to have insufficient 

knowledge of ℴ to occupy a position î2 ≠ î1, 

i.e., 

ŵ′ ⊢ R(x, ℴ) ≇ R(î2, ℴ). 

 



• It follows from this that, in order to fully 

access the position î2, x will have to resume 

studying ℴ so that we finally have: 

ŵ′ ⊢ R(x, ℴ) ≅ R(î2, ℴ).  

• An example: Student teachers x who had (at 

least) a bachelor’s degree in mathematics 

(and therefore knew the theory of real 

number series “well”), however knew 

nothing about the decimal development of a 

real number, a notion that, it seems, a 

mathematics teacher should be familiar with. 



 

• As a student educator, I also considered that 

these students, who certainly “knew” the 

concept of a polygon, should also have 

“some knowledge” of the theorems relating 

to the equidecomposability of polygons. (To 

the reader who does not “know” what these 

theorems are, who has never heard of the 

theorem of Hadwiger-Glur (1951), I simply 

suggest to inquire into this question.) 

 

 



Principal vs. auxiliary didactic systems 

• When a gesture δ relating to an object ℴ 

and a set X of persons x, is performed, 

learning will only take place if didactic 

systems S(X, Y, ℴ) appear and function. 

• Given any object, three major questions 

arise: what is the object made of? (its 

structure); how does it work? (its 

functioning); what can it be used for? (its 

utility). 



• The notation S(X, Y, ℴ) is a coarse but 

basic model of the structure of a didactic 

system. It is, more precisely, a modelling 

tool. 

• An example not yet obsolete: A 

secondary school class [X, y] is about to 

study an object ℴ, which is assumed here 

to be a work that is not a question (a 

question is also, of course, a work, that is 

to say, a human production). 

 



• How will the didactic system   = S(X, 

y, ℴ) work? A general answer is as 

follows: the didactic system   must work 

to produce an answer to each of the three 

major questions relating to the structure 

of ℴ, its functioning and its utility. 

• For each of these three questions Q, the 

system   = S(X, y, ℴ) must provide an 

answer A = A
♥
 to Q as indicated by the 

Herbartian schema, S(X, y, Q) ➥ A
♥
. 



• How can the answer A
♥
 be produced by 

 ? Here is an often-criticized traditional 

technique. The professor y gives a lecture 

on ℴ in which he presents, among other 

things, his/her answer, Ay, to question Q. 

This answer will be the answer A
♥
 of the 

class [X, y], that is to say the answer to Q 

that students x ∈ X will henceforth have 

to “know” and to use in the framework of 

[X, y]. 

 



• This minimalist description of a 

possible functioning of S(X, y, ℴ) already 

allows us to underline three essential 

aspects (which we will find in all cases). 

First of all, what y does can be modelled 

as follows: y creates a didactic milieu M 

by introducing a (first) element: (the text 

of) his/her lecture. From then on, the 

Herbartian schema will be written as 

follows: [S(X, y, Q) ➦ M] ➥ A
♥
. 

 



• The didactic system S(X, y, Q) is indeed 

“constructing” a milieu M in order to use 

it to produce the answer A
♥
. 

• Here, things are simplified to the 

maximum. In S(X, y, Q), only the teacher 

y contributes to M, and that moreover 

through a single gesture—the oral 

presentation of y’s “lecture” on Q (which 

is a part of y’s course on the object ℴ). 

 



 

• This may be supplemented by providing 

students with a written version of his or 

her oral presentation, or simply by 

allowing students to take written notes 

during y’s presentation (which in 

medieval universities, before the end of 

the 12th century, was not allowed). 

 

 



• One key notion of the ATD is that of 

topos (from Greek τόπος “place, 

location”): the word refers to the set of 

types of tasks that a person in a given 

position may be required to perform (in 

compliance with this position’s 

praxeological equipment). 

• In a didactic system S(X, y, Q), there are 

thus the topos of the “student” x ∈ X and 

the topos of the “teacher” y. 



• In the case mentioned so far, the student 

topos does not allow students to have a 

say in the elaboration of the didactic 

milieu M, which would be illegitimately 

encroaching on the teacher topos. 

 

• Generally speaking, examining the 

topos of different institutional positions is 

a key element in the analysis of the 

functioning of a didactic system—and, 

indeed, of any institution. 



 

• The presentation by y of a lecture on Q 

presupposes, before the functioning of 

S(X, y, Q) takes place, the functioning of 

another didactic system that can be 

written as S(y, ∅, Q), whose output will 

be the answer Ay which will then be 

presented to X by y: 

S(y, ∅, Q) ➦ My] ➥ Ay. 

 



• If we look at   = S(X, y, Q) as the 

principal didactic system (PDS), the 

system S(y, ∅, Q) is an auxiliary didactic 

system (ADS) of  . There may also exist 

induced didactic systems (IDS): to 

develop Ay, y may work with other 

teachers y′ and y″ within S({y, y′, y″}, ∅, 

Q); or y may do so under the supervision 

of “trainers” z and z′, so that the didactic 

system S(Y, Z, Q) will then function, 

where Y = {y, y′, y″} and Z = {z, z′}. 



• The same is obviously true on the 

student’s side: “homework”, which 

normally gives rise to the formation and 

functioning of an auxiliary didactic 

system S(x, ∅, Q), sometimes also gives 

rise to induced didactic systems, of the 

form S(x,   , Q), where x ∈ X and where    

is a “study helper” (father or mother, 

older brother or sister, private teacher, 

etc.), or, more generally, of the form 

S({x, x′, x″},   , Q). 



Questioning the world? 

• The type of didactic systems examined 

so far may seem to some people to be 

“old-fashioned”, archaic, even harmful, 

in short, whose only future is to be 

relegated to the museum of outdated 

pedagogies. From the point of view of 

the ATD, this would be a gross error. 

 



• Let’s start with a theoretical principle: 

Any didactic system that can function 

can have utility. And note that what we 

are doing together hic et nunc is of the 

type indicated above in terms of both 

structure and functioning: a “teacher” y = 

ϟ (i.e., myself) delivers a presentation in 

which he attempts to make known an 

answer Aϟ to a question Q which can be 

formulated as follows: “What is (the 

paradigm of) questioning the world?” 



• There are similarities between an 

ordinary secondary school classroom and 

our conference. In a class, for example, 

some students are extremely interested in 

what the teacher is saying, while others, 

no doubt a minority, are indifferent, to 

the point where some of them may even 

wonder what they are doing there... I see 

no reason why it should be very different 

for us—hoping, of course, that the 

uninterested are exceptions. 



• However there’s an essential difference. 

The participants x to this congress who 

happen to inquire into Q belong to a 

didactic system S(  ,   , Q), where    ∋ x 

and where    ∈    helps in some way with 

the inquiry into Q (of course we can have 

   = ∅). In this case, the didactic systems 

S(  ,   , Q) are principal didactic systems, 

while the didactic system we form 

together here, that is, S(X, ϟ, Q), becomes 

an auxiliary didactic system.  



 

• In truth, when a team    of students or 

researchers is engaged in an inquiry into 

a question Q, that is, in a study and 

research process (SRPr) relating to Q, 

which determines a study and research 

path (SRPa) towards an answer A to Q, 

didactic systems other than S(  ,   , Q), 

are auxiliary (or induced) didactic 

systems. 

 



 

• I can now begin to clarify what the 

paradigm of questioning the world is. Let 

us start with the bare minimum, namely a 

didactic system of the form S(X, ∅, Q), 

where Q is a question and X is a non-

empty set of “inquirers” (students, 

researchers, etc.). Immediately, two 

questions arise. 

 

 



• The first is: where does the Q question 

come from? This is an important aspect 

of what I have called the destiny of 

questions within an institution—a 

classroom, a laboratory, etc.—or a 

complex of institutions. 

 

• The second question is: Who are the 

students x ∈ X, and how did the set X 

originate? 

 



 

• These two questions remind us that a 

didactic system does not live in a social 

vacuum but in an institutional universe 

that generates conditions and constraints. 

In the scale of levels of didactic co-

determinacy specific to the ATD, we find 

the following sequence of levels: 

 

 

 



… 

⇵ 

Society 

⇵ 

School 

⇵ 

Pedagogy 

⇵ 

Didactic system 

⇵ 

… 



• It may be noted that if we read this 

diagram as a model of the world of 

secondary education, one level seems to 

be missing: that of the classes, as referred 

to above. This absence is voluntary: 

dividing the population of a school into 

permanent “classes” is a pedagogical 

provision, which may or may not be 

implemented (there are, in the case of 

France and other societies, historical 

counter-examples). 



 

• It should also be remembered that the 

word school (from the Greek σχολή, 

skholè), as used here, refers to an 

institution of any sort that provides a 

place and time that enable its subjects to 

engage in study (or in the direction of 

study), escaping for a moment from the 

other obligations of personal and social 

life. 



• The word “school” therefore refers to a 

very broad spectrum of institutions. In 

addition to the fact that every family with 

young children is a school (which hosts 

didactic systems auxiliary to the principal 

didactic systems formed in the 

classrooms to which these children 

belong), it must also be seen that every 

laboratory or research centre is a school 

in the sense of the ATD. 

 



• It is the institutional environments of 

S(X, ∅, Q) that will largely determine 

both X and Q. For example, if S(X, y, Q) 

is formed in an 8
th

 grade class whose 

mathematics teacher is y, we know 

roughly how X was defined. 

• In this case, we also know that the 

question Q can be, for example: “What is 

the length of the diagonal of a rectangular 

box whose side lengths are a, b, and c?” 



• If the class is a thematic workshop 

offered to 10
th

 graders, it could be—as a 

possible pedagogical arrangement—that 

the students x ∈ X have chosen the 

workshop on “global warming” (among 

several other possibilities). In this case, it 

may be that the question Q is simply 

stated as follows: “Why do carbon 

dioxide emissions into the atmosphere 

contribute to global warming?” 

 



• A third example, related to the first one 

above, concerns inquiries that teachers 

may have to conduct on their own. In a 

lower secondary school, four 

mathematics teachers, y1, y2, y3, y4, have 

set up a fortnightly seminar to explore 

questions arising from their teaching. 

This seminar is an institution similar to a 

classroom, which allows them to escape 

momentarily from the usual obligations 

of their lower secondary school. 



 

• For reasons related to their didactic 

needs as teachers, they then form the 

didactic system S(Y, ∅, Q) where Y = {y1, 

y2, y3, y4} and where Q is formulated as 

follows: “For which triplets of strictly 

positive integers a, b, c is there a strictly 

positive integer d such that a
2
 + b

2
 + c

2
 = 

d
2 
?” 

 

 



• The question of questions and their 

destiny is at the heart of the paradigm of 

questioning the world. The cardinal 

principle here is that, for a collective X of 

persons to inquire into a question Q, it is 

essential that this question “arises” for 

this collective, that is to say, that 

providing a “good” answer A to Q 

satisfies a praxeological need (in terms of 

praxis and logos) experienced by X. 

 



 

• A key problem here is: Who decides 

whether X needs an answer to Q? Who 

ultimately decides that X should have the 

means to study Q? The three examples 

above concern three different cases 

(which, by themselves, do not exhaust 

the possible cases, of course). 

 

 



• In the first case, we find a very classic 

situation, which comes under the 

paradigm of visiting works: there is, in 

France, a national study programme for 

the 8
th

 grade which imposes to study “the 

Pythagorean theorem”. The study of this 

“prestigious” work w involves, often very 

lightly, a study of its structure, function 

and utility—it is the latter component 

that is concerned by the question put to 

the students X. 



• The students here have no part in the 

choice of w or in the choice of the 

question of the diagonal of a rectangular 

box. Tutelary powers (minister, teacher, 

etc.) decide all this for them.  

 

• In the second case—the four teachers 

and their fortnightly seminar—the idea of 

praxeological need is much more 

identifiable. 



• One might think that, with regard to the 

“applications” of the Pythagorean 

theorem, these teachers would like to 

offer their students triplets of strictly 

positive integers (a, b, c) such that a
2
 + b

2
 

+ c
2
 is the square of an integer—before 

moving on to other cases. The need to 

answer the question Q under study is 

rooted in this requirement. 

 



• It should be noted that such an inquiry 

could just as well concern all teachers of 

mathematics in an 8
th
 grade class. But the 

study of this question, if I am well 

informed, is not generally regarded as a 

must (among others) of the profession, a 

fact one can see as a symptom of the 

praxeological abandon from which the 

profession suffers. 

 



• The third case is, in a sense, 

intermediate. Here, we are concerned 

with getting 10
th
 graders to inquire into a 

question that is known to everyone but to 

which it is not so easy to provide an 

answer, even though it would be likely to 

satisfy what is widely recognised as a 

prevalent praxeological need of all 

citizens. 

 

 



 

• Two remarks are in order here. First 

remark: as a general rule, when one tries 

to give an answer A to a “complex” 

question Q, one can only arrive at a 

partial answer. The inquiry makes a 

more or less developed contribution to 

the elaboration of a “total” answer, which 

may not exist. 

 

 



• Second remark: when a didactic system 

S(X, Y, Q) comes into existence (with 

possibly Y = ∅), one must consider as a 

general law that Q is there because it has 

imposed itself on X, for whatever reason, 

whether one judges this imposition 

justified or illegitimate. Students did not 

choose the question just because they 

would “like” to study it. This, in truth, 

has important consequences for the 

destiny of questions. 



• In fact, some questions are never 

asked—at best, they are stillborn—, 

others will be forgotten very quickly or 

will fall into epistemological disregard—

no one will be found to “care” about 

them. In the historical process to install 

in our societies and its schools the 

paradigm of questioning the world, an 

essential operation aims to fashion a 

programme of questions that meets a 

decisive criterion. 



 

• Here is this criterion: given a school σ 

(in the broad sense already explained), or 

a system of schools Σ, the “curriculum of 

questions”   of σ (or Σ) must gather the 

questions which the “student” in a given 

position p must have studied in order to 

access, equipped with adequate 

praxeological equipment, a subsequent 

position p′ within the school or outside it. 

 



What we are faced with 

• This process of creating a new didactic 

world clashes hard with the old world, in 

which what is prominent are the works w 

to be studied, and in which questions are 

often a pretext for studying a work w 

determined a priori. How does this 

happen? 

 



• In order to study a question Q, one 

needs tools, which find in it a part of 

their utility. In the historical evolution 

that led to the hegemony of the paradigm 

of visiting works, tools were put forward 

for their own sake, and their uses (to 

answer questions) were, in effect, 

downplayed. Programmes of study were 

formulated in terms of works. Instead of 

a programme of questions, programmes 

of works were imposed. 



• Then, in connection with the 

development of didactics, questions were 

rehabilitated and sought after as a means 

of provoking the encounter with works 

that they then made appear useful if not 

indispensable to the elaboration of 

answers to questions. At the same time, 

works, considered in and of themselves, 

appeared to be privileged, the questions 

that motivated their study being generally 

accessory, as so many pretexts. 



• How does this work? The teacher y 

starts from a work w having a certain 

curricular “prestige”, and looks for a 

question Q whose study by X, under y’s 

supervision, must lead X to meet and 

study, to a certain extent, the work w. 

Here, the didactic system S(X, y, Q) is an 

auxiliary didactic system generating the 

principal didactic system S(X, y, w). 

 



• By contrast, in the new paradigm, the 

class [X, y] starts from a question Q, 

whose study by the principal didactic 

system S(X, y, Q) generates auxiliary 

didactic systems of the form S(X, y, w), 

where the utility of w in the study of Q is 

key. The study of w and the degree to 

which it is deepened depend in such a 

case on the need for knowledge arising 

from the study of Q, and not on any 

teaching tradition, however venerable. 



• Highlighting works while forgetting the 

questions they help or have helped to 

answer, is obviously creating an “upside 

down” world. However, this state of 

affairs has not been uniformly established 

from the outset. Here is an example. 

• It is usual to teach students this 

characteristic property of parallelograms: 

their diagonals bisect each other. 



• It seems that today’s mathematics 

teachers would not know how to answer 

the question, “What is the point of 

knowing this?” More than that, I believe 

that most of them have never asked 

themselves this question. Faced with it, 

some would no doubt reply, not without 

arrogance: “It’s not meant to be used, it 

just is!” One could retort maliciously: 

“Yes, like a hammer or a saw…” 

 



 

• However there were textbooks, still in 

the 20
th 

 century, which explained to their 

young readers what was the “utility” of 

parallelograms and in particular of the 

property of their diagonals. But again I 

will let you inquire into this question for 

yourselves! 

 

 



• Here is a second example. Until the last 

few years, the curriculum for the 8
th
 

grade in France stated that students 

should know the equality 
a

b
 = a × 

1

b
. Like 

the “property of the diagonals”, it is 

certainly true! But this is not enough: the 

equality a × b = 
1

1

a
 × 

1

b

, ignored by the 

curriculum, is just as true for example. 



• In fact, the equality 
a

b
 = a × 

1

b
 is a 

curricular vestige of a bygone era, when, 

lacking “modern” calculation tools, 

divisions were sometimes avoided and 

replaced by multiplications. For example, 

we had 
31

2
 = 31 × 

1

2
 = 31 × 0.5 = 15.5, or 

17

5
 = 17 × 

1

5
 = 17 × 0.2 = 3.4. 



• One had to bear in mind that 
1

2
 = 0.5, 

1

5
 

= 0.2 or 
1

3
 ≈ 0.33. The most remarkable 

use of this technique concerned the 

number π. In order to draw a circle on the 

ground with a circumference of 50 

metres, one has to take a radius r ≈ 
50

2 π
 m. 

We then have: 
50

2 π
 = 

25

 π
 = 25 × 

1

π
. 



• At this point, the student must have in 

mind that 
1

π
 ≈ 0.32 (or, more precisely, 

0.318), in the same way that we know 

that π ≈ 3.14 or 3.1415. Here, we would 

then have: 
25

 π
 ≈ 25 × 0.32 = 100 × 0.08 = 

8. (Today, using the Google calculator  , 

we get 
25

π
 =  7.95774715459.) 

 



• In the world of works generated by 

human activity, by scientific and 

technical activity in particular, there is a 

permanent updating of the collections of 

works on which a given institution feeds 

its activity. One of the simplest examples 

relates to quadratic equations. Everyone 

still learns today, for example, that the 

equation ax
2
 + bx + c = 0 (with ac ≠ 0) 

has the solutions x = 
–b ± b

2
 – 4ac

2a
. 



• However, in the Wikipedia article 

“Quadratic equation”, one also finds the 

following non-traditional formula: 

x = 
2c

–b ± b
2
 – 4ac

. 

But what is the purpose of this formula? 

Here again, I will leave readers to inquire 

for themselves. 

 



• If, in a general way, the evolution of the 

questions being addressed in a given field 

gives rise to new tools, this evolution can 

give new life to old, largely forgotten 

tools. A striking case is that of 

computational geometry, prompted in 

particular by the needs of computer 

graphics, where the names of 

mathematicians Georgi Voronoi (1868–

1908) or Boris Delaunay (1890–1980) 

have reappeared. 



 

• Many other examples of unprecedented 

progress and revisits to old creations 

could be given. What is important is to 

emphasise that the key criterion is not a 

formal one, but a functional one: a work 

w interests us because it allows us to 

construct an answer to a question Q, 

without which life would be a little less 

appropriate. 

 



Uses and misuses of the didactic transposition 

• The historical process of disconnecting works 

from questions has had and continues to have 

severe consequences. Indeed, the ever-active 

processes of didactic transposition will take 

hold of the works, and free them from the 

functions they originally fulfilled. To continue a 

comparison sketched above, one could think 

that, in order to “simplify” the teaching of the 

saw and the hammer, one could replace the 

blade of the saw with a stretched string or the 

head of the hammer with a piece of foam. 



• This process of simplification of works went 

hand in hand with a correlative process of 

“purification” of the mathematics taught, which 

tended to break their organic links with the 

phenomena studied in disciplinary fields that 

were originally close, but from which they 

seemed to want to keep their distance, as 

nothing “non-mathematical” should enter the 

mathematics classroom. To put it bluntly, the 

mathematics classroom appeared to be cut off 

from the rest of the world! 

 



• I will quickly illustrate this phenomenon with 

an example that was the subject of a work co-

authored by Heidi Strømskag and myself 

entitled Elementary algebra as a modelling tool: 

A plea for a new curriculum. What we study in 

this paper is an essential phenomenon, which 

has led to the elimination of parameters from 

elementary algebra. What is it about? Consider 

first the equation 1.2 x = 3. This is one of the 

simplest equations one can imagine. Its solution 

is x = 
3

1.2
 = 

1

0.4
 = 2.5. 



• The point to note here is that the solution is a 

number. Now consider Ohm’s law, which I 

think everyone knows: V = R I. This equality can 

be viewed as a first degree equation with respect 

to the unknown x = R. The solution of the 

equation is x = R = 
V

I
. This time the solution is 

no longer a number, but a formula, namely the 

formula R = 
V

I
. The elimination of parameters in 

principle prohibits the small algebraic 

calculation I just did. 



• The teacher or textbook will tell the students 

that, e.g., V = 3 volts and I = 1.2 amperes, and 

students will then have to solve the parameter-

free equation 3 = 1.2 R, which leads to R = 
3

1.2
 = 

1

0.4
 = 2.5. (If you don’t eliminate units, you have 

R = 
3 V

1.2 A
 = 

3

1.2
  Ω = 2.5 Ω.) The vanishing of 

parameters leads to the “deparametrization” of 

formulas, before embarking on “pure” numerical 

calculations. 

 



• The previous example and many others show 

that it is difficult to model a system without 

working with parameters. I mentioned above the 

question “Why do carbon dioxide emissions into 

the atmosphere contribute to global warming?” 

One of the earliest papers on this subject dates 

from 1896: it is entitled On the Influence of 

Carbonic Acid in the Air upon the Temperature 

of the Ground and is due to Svante Arrhenius 

(1859-1927), who was awarded the Nobel Prize 

for Chemistry in 1903 (Philosophical Magazine 

and Journal of Science, Series 5, Volume 41, 

April 1896, pp. 237–276). 



• Here is a very brief extract from this study: 

Then we find for the column of air 

βγθ4 = βγν(T4 – θ4) + αA + M (1) 

The first member of this equation represents the 

heat radiated from the air (emission-coefficient β, 

temperature θ) to space (temperature 0). The 

second one gives the heat radiated from the soil 

(1 cm.2, temperature T, albedo 1 – ν) to the air; 

the third and fourth give the amount of the sun’s 

radiation absorbed by the air, and the quantity of 

heat obtained by conduction (air-currents) from 

other parts of the air or from the ground. 

(pp. 255–256). 



 

 

• In 2009, 113 years later, MIT environmental 

engineering experts Michael Szulczewski and 

Ruben Juanes published (in Energy Procedia, 

Volume 1, Issue 1, pp. 3307–3314) a study on 

carbon capture and storage entitled A simple but 

rigorous model for calculating CO2 storage 

capacity in deep saline aquifer at the basin 

scale. 

 

 

 



• Here is a very short extract from their study: 

There are two important equations of the 

model. The equation to calculate the storage 

capacity is: 

C = 
2MΓ2(1 – SWC)

Γ2 + (2 – Γ)(1 – M + MΓ)
 ρCO2ϕHWLtotal,  (1) 

where C is the mass of trapped CO2, Γ is the 

trapping coefficient, M is the mobility ratio, 

ρCO2 is the density of CO2, ϕ is the porosity, W 

is the length of the injection array, H is the net 

sandstone thickness of the reservoir, and Ltotal is 

the total extent of the CO2 plume… (p. 3309)  

 



• This is the main formula of the “simple but 

rigorous” model that the authors propose. These 

examples remind us that, when we model a 

system and do not eliminate parameters by 

assigning them arbitrary numerical values, 

parameters swarm... But I would now like to 

illustrate with a new example what we might 

want to do with secondary school pupils—

within the framework of a “new curriculum” 

which is still far from existing! 

 

 

 



• This example derives from a research activity 

carried out a long time ago with colleagues from 

the IREM of Aix-Marseille in a workshop set up 

in a lower secondary school in Marseille and 

attended by 9th graders. I reported on the activity 

of this workshop in a publication of the IREM 

of Aix-Marseille released in 1989 and entitled 

Arithmetic, Algebra, Modelling: Stages of a 

research study. Here I will only refer to the 

physical system considered with the students 

and its modelling. 

 



• The activity proposed to the students was 

called “Floating boxes”. A box with a square 

base, without a lid, is considered and the 

question of its buoyancy is raised. 

 

 

 

 

 

 

 

 

 



• The boxes used were made of lead, so as to 

create a sense of paradox: a box made of a 

“heavy” material which may or may not float—

for example, there were large boxes that floated 

and small ones that sank, etc. 

• Let’s model this type of systems. If the base of 

the box is a square of 

side a and the box is of 

height H, the area of the 

walls of the box is equal 

to a2 + 4aH.  

 



• Let us denote by σ the mass per unit area of the 

walls. The mass of the box is therefore (a2 + 

4aH)σ. If the box floats by sinking a length x, 

the buoyancy is equal to a2xμ, where μ is the 

density of the liquid in which the box is 

immersed. The solution in x of this equation is 

x = 










1 + 
4H

a
 
σ

μ
. 

If x < H, the box floats; if x > H, the box sinks. 

Therefore, we need to study this inequality: 











1 + 
4H

a
 
σ

μ
 < H. 



• If γ = σμ; we have 










1 + 
4H

a
 γ < H ⇔ 









1

γ
 – 

4

a
H > 1. 

Before going further, two remarks will be 

useful. Firstly, the liquid used was water, so I 

will take here μ = 1 g / cm3. I assume that the 

walls were 3 mm = 0.3 cm thick, so that 1 cm2 of 

wall has a mass equal to that of a volume of 

0.3 cm × 1 cm2 = 0.3 cm3 of lead. The density of 

lead is 11.35 g / cm3; we have: (11.35 g / cm3) × 

0.3 cm3 = (11.35 × 0.3) g = 3.405 g. I will take σ 

= 3.4 g / cm2, which gives γ = 
σ

μ
 = 

3.4 g / cm2

1 g / cm3  = 

3.4 cm. 



• Let us return to the inequality 








1

γ
 – 

4

a
H > 1, 

which should give us the minimum value of the 

height H for the box to float. A person working 

in a hurry might then write: 









1

γ
 – 

4

a
H > 1 ⇔ H > 

1

1

γ
 – 

4

a

. 

The minimum height would therefore be Hm = 
1

1

γ
 – 

4

a

 = 
aγ

a – 4γ
. But here an “obstacle” appears. 



• We became aware of a phenomenon that we 

had not anticipated: we thought that if a box 

sank, and we increased its height sufficiently, it 

would end up floating. This was not 

experimentally feasible in the classroom—what 

would we do if Hm was of the order of several 

metres for example? But what the above 

algebraic modelling makes clear is that we only 

have the equivalence 








1

γ
 – 

4

a
H > 1 ⇔ H > 

1

1

γ
 – 

4

a

 = 

aγ

a – 4γ
 if 

1

γ
 – 

4

a
 > 0, that is, if we have: a > 4 γ. 



 

 

• Here, 4 γ = 4 × 3.4 cm = 13.6 cm. If a < 4 γ = 

13.6 cm, whatever its height, the box will sink. 

This is a “result” that the study done in the 

workshop was revealing to us! To put it more 

loosely, if the box has too small a base, it will 

never float. 

 

 

 

 

 



A fascination for works always rekindled? 

• The example of the floating boxes, like any 

study of a question Q, can revive in each of 

us the atavistic attraction for works, or, more 

exactly, for works already made, recognized, 

long taught, and often “prestigious”. (I recall 

in passing that, originally, “prestigious” 

means “which makes illusion, is deceitful”.) 

 



• Arrived at the formula Hm = 
1

1

γ
 – 

4

a

 = 
aγ

a – 4γ
, 

some readers will say to themselves: “There, 

we have a function f of the variable a, we can 

study its sign, and for that calculate its 

derivative, etc.” So here we are back in the 

old world! Denoting by =
s
 the relation “have 

the same sign as”, and for a > 4γ, we will 

thus have Hm = 
aγ

a – 4γ
 =

s
 a – 4γ, from which 

we deduce that Hm is strictly positive. 



• What happens now when a increases (with, 

still, a > 4γ)? We can reason as follows: 

“When a increases, then 
4

a
 decreases, so that 

1

γ
 – 

4

a
 increases and its inverse Hm decreases. 

Thus, when a > 4γ increases, then Hm 

decreases. Or: when the base of the box 

increases, the minimum height for the box to 

float decreases.” Here we have just entered 

the dialectic of media and milieus. We can 

(and must) use multiple milieus.  



• Let’s start with a simple numerical 

calculation, done here with Excel: 

 

 

 

 

 

 

 

 

 

 



• We can see here that, as 

the value a decreases, Hm 

increases. This fact is even 

more striking when a 

approaches the limit value 

13.6. We can see that 

experimentation here 

would require the 

construction of a box some 

5 metres high! 

 

 



• Let us now turn to algebraic calculation. 

The following calculation provides an answer 

that is in agreement with the above: if 4γ < a 

< b, then 

Hm(a) – Hm(b) = 
aγ

a – 4γ
 – 

bγ

b – 4γ
 

 = 
aγ(b – 4γ) – bγ(a – 4γ)

(a – 4γ)(b – 4γ)
  

= 
4γ2

(a – 4γ)(b – 4γ)
 (b – a) > 0. 



• Therefore, when a increases, Hm decreases: 

we find again the previous result. Of course, 

if one has studied elementary differential 

calculus, one can study the variation of the 

function f(x) = 
1

1

γ
 – 

4

x

 by studying the sign of 

its derivative. Here we have: f (x)′ =
s
  – 







1

γ
 – 

4

x
 ′ 

=
s
 






4

x
 ′ =

s
 – x ′  = – 1. The function f is therefore 

decreasing, as expected. 



• I must say, however, that I would rather see 

beginners in algebraic calculus check the 

validity of the equality established above: 

aγ(b – 4γ) – bγ(a – 4γ)

(a – 4γ)(b – 4γ)
 = 

4γ2

(a – 4γ)(b – 4γ)
 (b – a). 

To do so, we can start by observing that, if 

b = a, the numerator aγ(b – 4γ) – bγ(a – 4γ) 

is zero; it is therefore divisible by b – a. 

What is the cofactor of b – a? Let b = a + 1; 

then the numerator is equal to the cofactor. 

We have aγ(1 + a – 4γ) – aγ(a – 4γ) – γ(a – 

4γ) = aγ – γa + 4γ2 = 4γ2, as expected. 



Under the leadership of questions 

• In secondary schools, where parameters 

have, for the most part, disappeared, the 

little algebraic work explained above 

could no longer be done today—as it was 

already the case in the previous decades. 

In this regard, I refer again to the study 

by Heidi Strømskag and myself, which 

tries to show the path to a thorough 

renovation of the algebraic curriculum. 



 

 

• The phenomenon is in fact general: as 

soon as works are no longer in the 

service of the study of questions, they 

tend to evolve under the influence of 

other forces that have their own logic, 

that of the institutions that provide these 

works with their habitat. 

 

 



 

• When these institutions are didactic 

institutions, these forces are those of 

didactic transposition, which, by seeking 

to simplify the “knowledge to be taught” 

in order to make it more easily teachable, 

will often distort these works to the point 

of making them lose much of their 

genuineness and utility. 

 

 



 

• Conversely, all that we know leads us to 

believe that the rejuvenation of 

curriculums can only take place under the 

condition of giving leadership to the 

questions to be studied, the works created 

or studied and used being then 

organically linked to the study of those 

questions. 

 

 



• In conclusion, I will attempt to briefly 

describe the core of the paradigm of 

questioning the world—a paradigm 

whose conditions of possibility must be 

studied by didacticians at all levels of the 

didactic co-determinacy scale. We have 

seen that a school is any institution that 

offers persons who come to occupy a 

student position a time and a place for the 

study of questions or other works. I will 

refer generically to a school  . 



• A school   in principle offers a 

sequence of student positions p1, p2, …, 

pn, where n ≥ 1. The curriculum of   

then must specify, for each position pi 

(1 ≤ i < n), the set  i of questions Qi a 

student x must study (satisfactorily) in 

that position; and, for i = n, similarly, the 

set  ex of questions Qex the student must 

study (satisfactorily) in order to gain 

access, according to  , to positions pex of 

other institutions in society. 



 

• One of the great problems in the life of 

a school   is the “making” of the sets   

of questions Q and their accreditation by 

various “guardian” institutions. That 

accomplished, what students come to do 

in   is to study questions Q, that is, to 

inquire into those questions, and, through 

that, to dispose, then, of supposedly 

“appropriate” answers A. 

 



 

 

• An essential point of the type of 

didactic scenarios I describe here is that 

the choice of a question Qi should depend 

solely on its relevance to the position pi, 

and in no case on the works that could be 

relevant tools in the study of this 

question. 

 

 



 

• Some teachers might say for example: 

“Studying this question inevitably leads 

to studying the logarithm function, and 

for that reason it is an interesting 

question...”. This is typically an “old 

world” viewpoint, where works, taken 

per se, are everything, and questions are 

mere pretexts for encountering (and 

studying) works. 

 



 

 

• In the paradigm of questioning the 

world, by contrast, one must accept to 

ignore what the inquiry into Q will reveal 

(at least partially), namely that some 

works w could be used (that is, could be 

tools) in the inquiry into Q in order to 

lead to an appropriate answer A. 

 

 



• More specifically, five different cases 

of works may be distinguished: 

⓪ the work w is known to the students in 

position p and their knowledge of this 

work is adequate for the current inquiry; 

① the work w is known to the students in 

position p, but their relation to this work 

must be partially reworked so that it 

becomes adequate for the current study; 

 



 
 
② the work w is unknown to the students 

in position p, but its study in order to 

develop a relation to this work that is 

adequate for the current study is 

considered possible under the conditions 

and constraints of this inquiry; 

 
 
 



③ the work w is unknown to the students 

in position p, its study with a view to 

developing a relation to this work 

adequate to the current inquiry is deemed 

impossible under the conditions and 

constraints of this inquiry, but the 

students can understand in an authentic 

way the use made of w by authors who 

have themselves studied Q using w and 

made known their answers A♢; 



④ the work w is unknown to the students 

in position p, and, under the conditions 

and constraints of the inquiry, its study 

with a view to developing a relation 

adequate to the inquiry is deemed 

impossible, and the students cannot 

authentically understand the use that can 

be made of it in the inquiry in progress—

they thus reach the current limits of their 

questioning of the world on this point! 

 



• In the paradigm of visiting works, a 

lecture on a work w aims to make known 

successively its structure, its functioning, 

and finally (a part of) its utility. By 

contrast, in an inquiry into Q, the 

encounter with w begins with an 

encounter with its (partial) utility as 

shown by the intention to use it in this 

inquiry, as carried out by the students 

concerned or by authors whose analyses 

they encountered during their inquiry. 



• The study of the work’s functioning, 

which allows it to be used, comes 

afterwards, and this is all the more true of 

the study of its structure. For example, 

you can use the logarithm function to 

solve the equation 3
x
 = 17 (you get x = 

ln 17 / ln 3 =  2.57890192316) without 

“knowing everything” about the 

logarithm function. This “epistemic 

minimalism” is one of the golden rules in 

questioning the world. 



• Another remark must be made about the 

conduct of inquiry. One of the new 

principles of this conduct can be stated 

informally as follows: “Let’s inquire; 

we’ll see what happens and then we’ll 

discuss the decisions to be made.” More 

than the a priori analysis, it is here the 

analysis I have called in vivo that plays a 

cardinal role, between a priori and a 

posteriori analyses. 

 



• In the type of scenarios I am trying to 

describe here, another principle is 

essential. The process of study and 

research (SRPr) through which the 

inquiry into Q is carried out must be 

subject to regular stocktaking indicating, 

at time  , the state of the Herbartian 

schema 

[S(X, y, Q) ➦ M ] ➥ A
♥
 . 

 



• In particular, such stocktakings must 

describe, in addition to the state A
♥
 . of 

the answer under construction, the 

sequence of states M0, M1, M2, …, of the 

didactic milieu M. This latter description 

relates not only to the questions 

generated by the inquiry and the answers 

to these questions arrived at by the class, 

but also to the means of producing these 

questions and answers, that is, the works 

that are tools used for this. 



 

 

• As a test, we could thus try to describe 

the tools used above in the short study on 

floating boxes: we would find there, in 

particular, algebraic calculations with 

parameters, as well as elements of 

hydrostatics, especially Archimedes’ 

principle. 

 

 



• All the work thus done by [X, y] will be 

preparatory to the final work of 

institutionalization carried out in written 

form by the class under the direction of y. 

This written document will constitute a 

formalization of the class’s knowledge on 

the question studied—a body of 

knowledge that all x ∈ X will be required 

to study and which may be part of the 

final assessment of the students. 

 



• Of course, the pedagogical organisation 

should be consistent with these working 

principles. In particular, it is possible to 

imagine the class having seminar 

sessions (where the questions to be 

studied, the distribution of tasks between 

teams, etc., are discussed, and where the 

stocktaking mentioned above is 

presented) and workshop sessions where 

principal inquiries take place. 



• The same principles apply to auxiliary 

inquiries, especially when they involve a 

question such as “Can the work w be 

useful to the inquiry into Q, and, if so, 

how?” 

 

 

 

 

 

 



 

 

Thank you for your attention! 

 

 

 


